Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585816

RESUMEN

The antimicrobial resistance crisis (AMR) is associated with millions of deaths and undermines the franchise of medicine. Of particular concern is the threat of bioweapons, exemplified by anthrax. Introduction of novel antibiotics helps mitigate AMR, but does not address the threat of bioweapons with engineered resistance. We reasoned that teixobactin, an antibiotic with no detectable resistance, is uniquely suited to address the challenge of weaponized anthrax. Teixobactinbinds to immutable targets, precursors of cell wall polymers. Here we show that teixobactinis highly efficacious in a rabbit model of inhalation anthrax. Inhaling spores of Bacillus anthracis causes overwhelming morbidity and mortality. Treating rabbits with teixobactinafter the onset of disease rapidly eliminates the pathogen from blood and tissues, normalizes body temperature, and prevents tissue damage. Teixobactinassembles into an irreversible supramolecular structure of the surface of B. anthracis membrane, likely contributing to its unusually high potency against anthrax. Antibiotics evading resistance provide a rational solution to both AMR and engineered bioweapons.

2.
J Am Chem Soc ; 146(7): 4421-4432, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334076

RESUMEN

Lipids adhere to membrane proteins to stimulate or suppress molecular and ionic transport and signal transduction. Yet, the molecular details of lipid-protein interaction and their functional impact are poorly characterized. Here we combine NMR, coarse-grained molecular dynamics (CGMD), and functional assays to reveal classic cooperativity in the binding and subsequent activation of a bacterial inward rectifier potassium (Kir) channel by phosphatidylglycerol (PG), a common component of many membranes. Past studies of lipid activation of Kir channels focused primarily on phosphatidylinositol bisphosphate, a relatively rare signaling lipid that is tightly regulated in space and time. We use solid-state NMR to quantify the binding of unmodified 13C-PG to the K+ channel KirBac1.1 in liposomes. This specific lipid-protein interaction has a dissociation constant (Kd) of ∼7 mol percentage PG (ΧPG) with positive cooperativity (n = 3.8) and approaches saturation near 20% ΧPG. Liposomal flux assays show that K+ flux also increases with PG in a cooperative manner with an EC50 of ∼20% ΧPG, within the physiological range. Further quantitative fitting of these data reveals that PG acts as a partial (80%) agonist with fivefold K+ flux amplification. Comparisons of NMR chemical shift perturbation and CGMD simulations at different ΧPG confirm the direct interaction of PG with key residues, several of which would not be accessible to lipid headgroups in the closed state of the channel. Allosteric regulation by a common lipid is directly relevant to the activation mechanisms of several human ion channels. This study highlights the role of concentration-dependent lipid-protein interactions and tightly controlled protein allostery in the activation and regulation of ion channels.


Asunto(s)
Canales de Potasio de Rectificación Interna , Humanos , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Liposomas , Proteínas de la Membrana/metabolismo , Lípidos , Espectroscopía de Resonancia Magnética
3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895956

RESUMEN

The binding of Host Defense Peptides (HDPs) to the endotoxin of Gram-negative bacteria has important unsolved aspects. For most HDPs, it is unclear if binding is part of the antibacterial mechanism or whether LPS actually provides a protective layer against HDP killing. In addition, HDP binding to LPS can block the subsequent TLR4-mediated activation of the immune system. This dual activity is important, considering that HDPs are thought of as an alternative to conventional antibiotics, which do not provide this dual activity. In this study, we systematically determine, for the first time, the influence of the O-antigen and Lipid A composition on both the antibacterial and anti-endotoxin activity of four HDPs (CATH-2, PR-39, PMAP-23, and PMAP36). The presence of the O-antigen did not affect the antibacterial activity of any of the tested HDPs. Similarly, modification of the lipid A phosphate (MCR-1 phenotype) also did not affect the activity of the HDPs. Furthermore, assessment of inner and outer membrane damage revealed that CATH-2 and PMAP-36 are profoundly membrane-active and disrupt the inner and outer membrane of Escherichia coli simultaneously, suggesting that crossing the outer membrane is the rate-limiting step in the bactericidal activity of these HDPs but is independent of the presence of an O-antigen. In contrast to killing, larger differences were observed for the anti-endotoxin properties of HDPs. CATH-2 and PMAP-36 were much stronger at suppressing LPS-induced activation of macrophages compared to PR-39 and PMAP-23. In addition, the presence of only one phosphate group in the lipid A moiety reduced the immunomodulating activity of these HDPs. Overall, the data strongly suggest that LPS composition has little effect on bacterial killing but that Lipid A modification can affect the immunomodulatory role of HDPs. This dual activity should be considered when HDPs are considered for application purposes in the treatment of infectious diseases.

4.
Cell ; 186(19): 4059-4073.e27, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37611581

RESUMEN

Antimicrobial resistance is a leading mortality factor worldwide. Here, we report the discovery of clovibactin, an antibiotic isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant Gram-positive bacterial pathogens without detectable resistance. Using biochemical assays, solid-state nuclear magnetic resonance, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C55PP, lipid II, and lipid IIIWTA). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. This potent antibiotic holds the promise of enabling the design of improved therapeutics that kill bacterial pathogens without resistance development.


Asunto(s)
Antibacterianos , Bacterias , Microbiología del Suelo , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Bioensayo , Difosfatos
5.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37591722

RESUMEN

Cancer cells make extensive use of the folate cycle to sustain increased anabolic metabolism. Multiple chemotherapeutic drugs interfere with the folate cycle, including methotrexate and 5-fluorouracil that are commonly applied for the treatment of leukemia and colorectal cancer (CRC), respectively. Despite high success rates, therapy-induced resistance causes relapse at later disease stages. Depletion of folylpolyglutamate synthetase (FPGS), which normally promotes intracellular accumulation and activity of natural folates and methotrexate, is linked to methotrexate and 5-fluorouracil resistance and its association with relapse illustrates the need for improved intervention strategies. Here, we describe a novel antifolate (C1) that, like methotrexate, potently inhibits dihydrofolate reductase and downstream one-carbon metabolism. Contrary to methotrexate, C1 displays optimal efficacy in FPGS-deficient contexts, due to decreased competition with intracellular folates for interaction with dihydrofolate reductase. We show that FPGS-deficient patient-derived CRC organoids display enhanced sensitivity to C1, whereas FPGS-high CRC organoids are more sensitive to methotrexate. Our results argue that polyglutamylation-independent antifolates can be applied to exert selective pressure on FPGS-deficient cells during chemotherapy, using a vulnerability created by polyglutamylation deficiency.


Asunto(s)
Antagonistas del Ácido Fólico , Humanos , Antagonistas del Ácido Fólico/farmacología , Metotrexato/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Ácido Fólico/farmacología , Fluorouracilo/farmacología
6.
bioRxiv ; 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37292624

RESUMEN

Antimicrobial resistance is a leading mortality factor worldwide. Here we report the discovery of clovibactin, a new antibiotic, isolated from uncultured soil bacteria. Clovibactin efficiently kills drug-resistant bacterial pathogens without detectable resistance. Using biochemical assays, solid-state NMR, and atomic force microscopy, we dissect its mode of action. Clovibactin blocks cell wall synthesis by targeting pyrophosphate of multiple essential peptidoglycan precursors (C 55 PP, Lipid II, Lipid WTA ). Clovibactin uses an unusual hydrophobic interface to tightly wrap around pyrophosphate, but bypasses the variable structural elements of precursors, accounting for the lack of resistance. Selective and efficient target binding is achieved by the irreversible sequestration of precursors into supramolecular fibrils that only form on bacterial membranes that contain lipid-anchored pyrophosphate groups. Uncultured bacteria offer a rich reservoir of antibiotics with new mechanisms of action that could replenish the antimicrobial discovery pipeline.

7.
ACS Infect Dis ; 9(3): 518-526, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36790385

RESUMEN

Peptide antibiotics have gathered attention given the urgent need to discover antimicrobials with new mechanisms of action. Their extended role as immunomodulators makes them interesting candidates for the development of compounds with dual mode of action. The objective of this study was to test the anti-inflammatory capacity of a recently reported chimeric peptidomimetic antibiotic (CPA) composed of polymyxin B nonapeptide (PMBN) and a macrocyclic ß-hairpin motif (MHM). We investigated the potential of CPA to inhibit lipopolysaccharide (LPS)-induced activation of RAW264.7 macrophages. In addition, we elucidated which structural motif was responsible for this activity by testing CPA, its building blocks, and their parent compounds separately. CPA showed excellent LPS neutralizing activity for both smooth and rough LPSs. At nanomolar concentrations, CPA completely inhibited LPS-induced nitric oxide, TNF-α, and IL-10 secretion. Murepavadin, MHM, and PMBN were incapable of neutralizing LPS in this assay, while PMB was less active compared to CPA. Isothermal titration calorimetry showed strong binding between the CPA and LPS with similar binding characteristics also found for the other compounds, indicating that binding does not necessarily correlate with neutralization of LPS. Finally, we showed that CPA-killed bacteria caused significantly less macrophage activation than bacteria killed with gentamicin, heat, or any of the other compounds. This indicates that the combined killing activity and LPS neutralization of CPA can prevent unwanted inflammation, which could be a major advantage over conventional antibiotics. Our data suggests that immunomodulatory activity can further strengthen the therapeutic potential of peptide antibiotics and should be included in the characterization of novel compounds.


Asunto(s)
Antibacterianos , Macrófagos , Peptidomiméticos , Antibacterianos/farmacología , Bacterias , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Peptidomiméticos/farmacología , Células RAW 264.7 , Animales , Ratones
8.
Chemistry ; 28(70): e202202472, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36098094

RESUMEN

Specific interactions with phospholipids are often critical for the function of proteins or drugs, but studying these interactions at high resolution remains difficult, especially in complex membranes that mimic biological conditions. In principle, molecular interactions with phospholipids could be directly probed by solid-state NMR (ssNMR). However, due to the challenge to detect specific lipids in mixed liposomes and limited spectral sensitivity, ssNMR studies of specific lipids in complex membranes are scarce. Here, by using purified biological 13 C,15 N-labeled phospholipids, we show that we can selectively detect traces of specific lipids in complex membranes. In combination with 1 H-detected ssNMR, we show that our approach provides unprecedented high-resolution insights into the mechanisms of drugs that target specific lipids. This broadly applicable approach opens new opportunities for the molecular characterization of specific lipid interactions with proteins or drugs in complex fluid membranes.


Asunto(s)
Liposomas , Proteínas , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Espectroscopía de Resonancia Magnética , Liposomas/química , Fosfolípidos , Membrana Dobles de Lípidos/química
9.
Chemistry ; 28(69): e202202527, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-35979748

RESUMEN

The synthesis, characterization and catalytic activity of a new class of diruthenium hydrido carbonyl complexes bound to the tBu PNNP expanded pincer ligand is described. Reacting tBu PNNP with two equiv of RuHCl(PPh3 )3 (CO) at 140 °C produces an insoluble air-stable complex, which was structurally characterized as [Ru2 (tBu PNNP)H(µ-H)Cl(µ-Cl)(CO)2 ] (1) using solid-state NMR, IR and X-ray absorption spectroscopies and follow-up reactivity. A reaction with KOtBu results in deprotonation of a methylene linker to produce [Ru2 (tBu PNNP* )H(µ-H)(µ-OtBu)(CO)2 ] (3) featuring a partially dearomatized naphthyridine core. This enables metal-ligand cooperative activation of H2 analogous to the mononuclear analogue, [Ru(tBu PNP*)H(CO)]. In contrast to the mononuclear system, the bimetallic analogue 3 catalyzes the E-selective semi-hydrogenation of alkynes at ambient temperature and atmospheric H2 pressure with good functional group tolerance. Monitoring the semi-hydrogenation of diphenylacetylene by 1 H NMR spectroscopy shows the intermediacy of Z-stilbene, which is subsequently isomerized to the E-isomer. Initial findings into the mode of action of this system are provided, including the spectroscopic characterization of a polyhydride intermediate and the isolation of a deactivated species with a partially hydrogenated naphthyridine backbone.


Asunto(s)
Alquinos , Compuestos Heterocíclicos , Ligandos , Cristalografía por Rayos X , Modelos Moleculares , Hidrogenación
10.
Nature ; 608(7922): 390-396, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922513

RESUMEN

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.


Asunto(s)
Antibacterianos , Bacterias , Membrana Celular , Depsipéptidos , Viabilidad Microbiana , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/citología , Bacterias/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Depsipéptidos/química , Depsipéptidos/farmacología , Difosfatos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Lípidos/química , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Pirrolidinas/química , Azúcares/química
11.
Acta Biomater ; 146: 131-144, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35470073

RESUMEN

An infecting and propagating parasite relies on its innate defense system to evade the host's immune response and to survive challenges from commensal bacteria. More so for the nematode Anisakis, a marine parasite that during its life cycle encounters both vertebrate and invertebrate hosts and their highly diverse microbiotas. Although much is still unknown about how the nematode mitigates the effects of these microbiota, its antimicrobial peptides likely play an important role in its survival. We identified anisaxins, the first cecropin-like helical antimicrobial peptides originating from a marine parasite, by mining available genomic and transcriptomic data for Anisakis spp. These peptides are potent bactericidal agents in vitro, selectively active against Gram-negative bacteria, including multi-drug resistant strains, at sub-micromolar concentrations. Their interaction with bacterial membranes was confirmed by solid state NMR (ssNMR) and is highly dependent on the peptide concentration as well as peptide to lipid ratio, as evidenced by molecular dynamics (MD) simulations. MD results indicated that an initial step in the membranolytic mode of action involves membrane bulging and lipid extraction; a novel mechanism which may underline the peptides' potency. Subsequent steps include membrane permeabilization leading to leakage of molecules and eventually cell death, but without visible macroscopic damage, as shown by atomic force microscopy and flow cytometry. This membranolytic antibacterial activity does not translate to cytotoxicity towards human peripheral blood mononuclear cells (HPBMCs), which was minimal at well above bactericidal concentrations, making anisaxins promising candidates for further drug development. STATEMENT OF SIGNIFICANCE: Witnessing the rapid spread of antibiotic resistance resulting in millions of infected and dozens of thousands dying worldwide every year, we identified anisaxins, antimicrobial peptides (AMPs) from marine parasites, Anisakis spp., with potent bactericidal activity and selectivity towards multi-drug resistant Gram-negative bacteria. Anisaxins are membrane-active peptides, whose activity, very sensitive to local peptide concentrations, involves membrane bulging and lipid extraction, leading to membrane permeabilization and bacterial cell death. At the same time, their toxicity towards host cells is negligible, which is often not the case for membrane-active AMPs, therefore making them suitable drug candidates. Membrane bulging and lipid extraction are novel concepts that broaden our understanding of peptide interactions with bacterial functional structures, essential for future design of such biomaterials.


Asunto(s)
Parásitos , Animales , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Antimicrobianos , Bacterias , Humanos , Leucocitos Mononucleares , Lípidos/farmacología , Pruebas de Sensibilidad Microbiana
12.
Nat Commun ; 13(1): 1574, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322021

RESUMEN

C-type inactivation is of great physiological importance in voltage-activated K+ channels (Kv), but its structural basis remains unresolved. Knowledge about C-type inactivation has been largely deduced from the bacterial K+ channel KcsA, whose selectivity filter constricts under inactivating conditions. However, the filter is highly sensitive to its molecular environment, which is different in Kv channels than in KcsA. In particular, a glutamic acid residue at position 71 along the pore helix in KcsA is substituted by a valine conserved in most Kv channels, suggesting that this side chain is a molecular determinant of function. Here, a combination of X-ray crystallography, solid-state NMR and MD simulations of the E71V KcsA mutant is undertaken to explore inactivation in this Kv-like construct. X-ray and ssNMR data show that the filter of the Kv-like mutant does not constrict under inactivating conditions. Rather, the filter adopts a conformation that is slightly narrowed and rigidified. On the other hand, MD simulations indicate that the constricted conformation can nonetheless be stably established in the mutant channel. Together, these findings suggest that the Kv-like KcsA mutant may be associated with different modes of C-type inactivation, showing that distinct filter environments entail distinct C-type inactivation mechanisms.


Asunto(s)
Proteínas Bacterianas , Canales de Potasio , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Canales de Potasio/metabolismo , Conformación Proteica
13.
Front Microbiol ; 12: 694847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335524

RESUMEN

Lipo-tridecapeptides, a class of bacterial non-ribosomally produced peptides, show strong antimicrobial activity against Gram-positive pathogens, including antibiotic-resistant Staphylococcus aureus and Enterococcus spp. However, many of these lipo-tridecapeptides have shown high hemolytic activity and cytotoxicity, which has limited their potential to be developed into antibiotics. Recently, we reported a novel antimicrobial lipo-tridecapeptide, brevibacillin 2V, which showed no hemolytic activity against human red blood cells at a high concentration of 128 mg/L, opposite to other brevibacillins and lipo-tridecapeptides. In addition, brevibacillin 2V showed much lower cytotoxicity than the other members of the brevibacillin family. In this study, we set out to elucidate the antimicrobial mode of action of brevibacillin 2V. The results show that brevibacillin 2V acts as bactericidal antimicrobial agent against S. aureus (MRSA). Further studies show that brevibacillin 2V exerts its bactericidal activity by binding to the bacterial cell wall synthesis precursor Lipid II and permeabilizing the bacterial membrane. Combined solid-state NMR, circular dichroism, and isothermal titration calorimetry assays indicate that brevibacillin 2V binds to the GlcNAc-MurNAc moiety and/or the pentapeptide of Lipid II. This study provides an insight into the antimicrobial mode of action of brevibacillin 2V. As brevibacillin 2V is a novel and promising antibiotic candidate with low hemolytic activity and cytotoxicity, the here-elucidated mode of action will help further studies to develop it as an alternative antimicrobial agent.

14.
Front Microbiol ; 12: 693725, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220785

RESUMEN

Bacterial non-ribosomally produced peptides (NRPs) form a rich source of antibiotics, including more than 20 of these antibiotics that are used in the clinic, such as penicillin G, colistin, vancomycin, and chloramphenicol. Here we report the identification, purification, and characterization of a novel NRP, i.e., brevibacillin 2V (lipo-tridecapeptide), from Brevibacillus laterosporus DSM 25. Brevibacillin 2V has a strong antimicrobial activity against Gram-positive bacterial pathogens (minimum inhibitory concentration = 2 mg/L), including difficult-to-treat antibiotic-resistant Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus. Notably, brevibacillin 2V has a much lower hemolytic activity (HC50 > 128 mg/L) and cytotoxicity (CC50 = 45.49 ± 0.24 mg/L) to eukaryotic cells than previously reported NRPs of the lipo-tridecapeptide family, including other brevibacillins, which makes it a promising candidate for antibiotic development. In addition, our results demonstrate that brevibacillins display a synergistic action with established antibiotics against Gram-negative bacterial pathogens. Probably due to the presence of non-canonical amino acids and D-amino acids, brevibacillin 2V showed good stability in human plasma. Thus, we identified and characterized a novel and promising antimicrobial candidate (brevibacillin 2V) with low hemolytic activity and cytotoxicity, which can be used either on its own or as a template for further total synthesis and modification.

15.
Biochim Biophys Acta Gen Subj ; 1865(9): 129951, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34147544

RESUMEN

BACKGROUND: Antimicrobial peptides are considered potential alternatives to antibiotics. Here we describe the antibacterial properties of a family of novel cathelicidin-related (CR-) peptides, which we named PepBiotics, against bacteria typically present in cystic fibrosis (CF) patients. METHODS: Broth dilution assays were used to determine antibacterial activity of PepBiotics under physiological conditions, as well as development of bacterial resistance against these peptides. Toxicity was tested in mice and cell cultures while molecular interactions of PepBiotics with bacterial membrane components was determined using CD, ITC and LPS/LTA induced macrophage studies. RESULTS: A relatively small number of PepBiotics remained highly antibacterial against CF-related respiratory pathogens Pseudomonas aeruginosa and Staphylococcus aureus, at high ionic strength and low pH. Interestingly, these PepBiotics also prevented LPS/LTA induced activation of macrophages and was shown to be non-toxic to primary human nasal epithelial cells. Furthermore, both P. aeruginosa and S. aureus were unable to induce resistance against CR-163 and CR-172, two PepBiotics selected for their excellent antimicrobial and immunomodulatory properties. Toxicity studies in mice indicated that intratracheal administration of CR-163 was well tolerated in vivo. Finally, interaction of CR-163 with bacterial-type anionic membranes but not with mammalian-type (zwitterionic lipid) membranes was confirmed using ITC and 31P solid state NMR. CONCLUSIONS: PepBiotics are a promising novel class of highly active antimicrobial peptides, of which CR-163 showed the most potential for treatment of clinically relevant (CF-) pathogens in physiological conditions. GENERAL SIGNIFICANCE: These observations emphasize the therapeutic potential of PepBiotics against CF-related bacterial respiratory infections.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Catelicidinas
16.
J Vis Exp ; (169)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33749679

RESUMEN

Membrane proteins are vital for cell function and thus represent important drug targets. Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy offers a unique access to probe the structure and dynamics of such proteins in biological membranes of increasing complexity. Here, we present modern solid-state NMR spectroscopy as a tool to study structure and dynamics of proteins in natural lipid membranes and at atomic scale. Such spectroscopic studies profit from the use of high-sensitivity ssNMR methods, i.e., proton-(1H)-detected ssNMR and DNP (Dynamic Nuclear Polarization) supported ssNMR. Using bacterial outer membrane beta-barrel protein BamA and the ion channel KcsA, we present methods to prepare isotope-labeled membrane proteins and to derive structural and motional information by ssNMR.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular , Proteínas Bacterianas/metabolismo , Cuerpos de Inclusión/metabolismo , Marcaje Isotópico , Mutación Puntual/genética , Canales de Potasio/metabolismo , Replegamiento Proteico , Proteolípidos/aislamiento & purificación , Protones , Coloración y Etiquetado
17.
Magn Reson (Gott) ; 2(1): 187-202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35647606

RESUMEN

Regulation of DNA-templated processes such as gene transcription and DNA repair depend on the interaction of a wide range of proteins with the nucleosome, the fundamental building block of chromatin. Both solution and solid-state NMR spectroscopy have become an attractive approach to study the dynamics and interactions of nucleosomes, despite their high molecular weight of ~ 200 kDa. For solid-state NMR (ssNMR) studies, dilute solutions of nucleosomes are converted to a dense phase by sedimentation or precipitation. Since nucleosomes are known to self-associate, these dense phases may induce extensive interactions between nucleosomes, which could interfere with protein-binding studies. Here, we characterized the packing of nucleosomes in the dense phase created by sedimentation using NMR and small-angle X-ray scattering (SAXS) experiments. We found that nucleosome sediments are gels with variable degrees of solidity, have nucleosome concentration close to that found in crystals, and are stable for weeks under high-speed magic angle spinning (MAS). Furthermore, SAXS data recorded on recovered sediments indicate that there is no pronounced long-range ordering of nucleosomes in the sediment. Finally, we show that the sedimentation approach can also be used to study low-affinity protein interactions with the nucleosome. Together, our results give new insights into the sample characteristics of nucleosome sediments for ssNMR studies and illustrate the broad applicability of sedimentation-based NMR studies.

18.
J Phys Chem B ; 124(41): 9047-9060, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32961049

RESUMEN

Dynamic nuclear polarization (DNP) is a powerful method to enhance nuclear magnetic resonance (NMR) signal intensities, enabling unprecedented applications in life and material science. An ultimate goal is to expand the use of DNP-enhanced solid-state NMR to ultrahigh magnetic fields where optimal spectral resolution and sensitivity are integrated. Trityl-nitroxide (TN) biradicals have attracted significant interest in high-field DNP, but their application to complex (bio)molecules has so far been limited. Here we report a novel postmodification strategy for synthesis of hydrophilic TN biradicals in order to improve their use in biomolecular applications. Initially, three TN biradicals (referred to as NATriPols 1-3) with amino-acid linkers were synthesized. EPR studies showed that the α-position of the amino-acid linkers is an ideal modification site for these biradicals since their electron-electron magnetic interactions are marginally affected by the substituents at this position. On the basis of this finding, we synthesized NATriPol-4 with pyridine disulfide appended at the α-position. Postmodification of NATriPol-4 via thiol-click chemistry resulted in various TN biradicals including hydrophilic NATriPol-5 in a quantitative manner. Interestingly, DNP enhancements at 18.8 T of NATriPols for 13C,15N-proline in a glycerol/water matrix are inversely correlated with their hydrophobicity. Importantly, applications of hydrophilic NATriPol-5 and NATriPol-3 to biomolecules including a globular soluble protein and a membrane targeting peptide reveal significantly improved performance compared to TEMTriPol-1 and AMUPol. Our work provides an efficient approach for one-step synthesis of new polarizing agents with tunable physicochemical properties, thus expediting optimization of new biradicals for biomolecular applications at ultrahigh magnetic fields.

19.
Sci Rep ; 10(1): 9392, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523049

RESUMEN

The rising incidence of antibiotic-resistant lung infections has instigated a much-needed search for new therapeutic strategies. One proposed strategy is the use of exogenous surfactants to deliver antimicrobial peptides (AMPs), like CATH-2, to infected regions of the lung. CATH-2 can kill bacteria through a diverse range of antibacterial pathways and exogenous surfactant can improve pulmonary drug distribution. Unfortunately, mixing AMPs with commercially available exogenous surfactants has been shown to negatively impact their antimicrobial function. It was hypothesized that the phosphatidylglycerol component of surfactant was inhibiting AMP function and that an exogenous surfactant, with a reduced phosphatidylglycerol composition would increase peptide mediated killing at a distal site. To better understand how surfactant lipids interacted with CATH-2 and affected its function, isothermal titration calorimetry and solid-state nuclear magnetic resonance spectroscopy as well as bacterial killing curves against Pseudomonas aeruginosa were utilized. Additionally, the wet bridge transfer system was used to evaluate surfactant spreading and peptide transport. Phosphatidylglycerol was the only surfactant lipid to significantly inhibit CATH-2 function, showing a stronger electrostatic interaction with the peptide than other lipids. Although diluting the phosphatidylglycerol content in an existing surfactant, through the addition of other lipids, significantly improved peptide function and distal killing, it also reduced surfactant spreading. A synthetic phosphatidylglycerol-free surfactant however, was shown to further improve CATH-2 delivery and function at a remote site. Based on these in vitro experiments synthetic phosphatidylglycerol-free surfactants seem optimal for delivering AMPs to the lung.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/química , Pollos/metabolismo , Surfactantes Pulmonares/química , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/química , Sistemas de Liberación de Medicamentos/métodos , Excipientes/química , Lípidos/química , Pulmón/efectos de los fármacos , Fosfatidilgliceroles/química , Pseudomonas aeruginosa/efectos de los fármacos
20.
Nat Commun ; 11(1): 2848, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503964

RESUMEN

The natural antibiotic teixobactin kills pathogenic bacteria without detectable resistance. The difficult synthesis and unfavourable solubility of teixobactin require modifications, yet insufficient knowledge on its binding mode impedes the hunt for superior analogues. Thus far, teixobactins are assumed to kill bacteria by binding to cognate cell wall precursors (Lipid II and III). Here we present the binding mode of teixobactins in cellular membranes using solid-state NMR, microscopy, and affinity assays. We solve the structure of the complex formed by an improved teixobactin-analogue and Lipid II and reveal how teixobactins recognize a broad spectrum of targets. Unexpectedly, we find that teixobactins only weakly bind to Lipid II in cellular membranes, implying the direct interaction with cell wall precursors is not the sole killing mechanism. Our data suggest an additional mechanism affords the excellent activity of teixobactins, which can block the cell wall biosynthesis by capturing precursors in massive clusters on membranes.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/metabolismo , Depsipéptidos/farmacología , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Membrana Celular/ultraestructura , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Depsipéptidos/química , Liposomas/metabolismo , Espectroscopía de Resonancia Magnética , Microscopía Fluorescente , Estructura Molecular , Relación Estructura-Actividad , Uridina Difosfato Ácido N-Acetilmurámico/química , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...